High-Frequency Dimensional Effects in Ferrite-Core Magnetic Devices
نویسندگان
چکیده
(ABSTRACT) MnZn ferrites are widely used in power electronics applications where the switching frequency is in the range of several tens of kilohertz to a megahertz. In this range of frequencies the combination of relatively high permeability and relatively low conductivity found in MnZn ferrite helps to minimize the size of magnetic devices while maintaining high efficiency. The continuing improvement in semiconductor switches and circuit topologies has led to use of high-frequency switching circuits at ever increasing power levels. The magnetic devices for these high-power, high-frequency circuits require magnetic CORES that are significantly larger than standard ferrite-core devices used at lower power levels. Often such large ferrite cores must be custom designed, and at present this custom design is based on available material information without regard for the physical size of the structure. This thesis examines the issues encountered in the use of larger MnZn ferrite cores for high-frequency, high-power applications. The two main issues of concern are the increased power dissipation due to induced currents in the structure and the change in inductance that results as the flux within the core is redistributed at higher frequencies. In order to model these problems using either numerical or analytical methods requires a reliable and complete set of material information. A significant portion of this work is devoted to methods for acquiring such material information since such information is not generally available from the manufacturers. Once the material constants required for the analysis are determined, they are used in both closed-form and numerical model to illustrate that large ferrite cores suffer significant increases in loss and significant decreases in inductance for frequencies as low as several hundred kilohertz. The separate impacts of the electrical and magnetic losses in the core are illustrated through the use of linear finite element analyses of several example core structures. The device impedances calculated using the FEA tools show fair agreement with measurement. An analysis of gapped structures and segmented cross-sections shows that these design options can reduce the severity of the dimensional problems for some designs. Acknowledgments I would like to express my sincere appreciation to my advisor, Dr. Fred C. Lee, for the support and encouragement he provided throughout the course of this research. His extensive experience in the power electronics field has been a tremendous aid in focusing this work on the practical issues that face designers. I would also like to thank Dr. …
منابع مشابه
Design of planar coils of minimum resistance for magnetic recording devices
Magnetic data stored on computer hard disk drives is read and written by small electromagnets on read/write heads that pass over the surfaces of the spinning hard disks [7]. These electromagnets are composed of magnetic alloy cores with wire coils wrapped around them. When an electric current is sent to the coil, a magnetic field is induced in the ferrite core, and data is written to the disk b...
متن کاملAn Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications
Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملExchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film
Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange c...
متن کامل